Under the Sea: The Vulnerability of the Commons
Quicktabs: Citation
As a result, companies, governments, and individuals can send and receive more data than ever before. In 1993, Internet users transmitted around 100 terabits of data in a year; today, they send about 150 terabits every second. And this number is expected to exceed 1,000 terabits by 2020, fueled in large part by the expansion of cellular networks in Africa, Asia, and the Middle East.
Nearly all that data will travel along the seabed. Imagine, then, how damaging a determined attack on undersea infrastructure could be. One need only consider the destruction possible from natural causes and inadvertent interference. In 2006, an undersea earthquake near Taiwan snapped nine cables. It took 11 ships 49 days to finish repairs, while China, Japan, the Philippines, Singapore, Taiwan, and Vietnam lost critical communication links, disrupting regional banking, markets, and trade. In 2007, Vietnamese fishermen seeking to salvage copper from a defunct coaxial cable pulled up active lines instead, disrupting Vietnam’s communications with Hong Kong and Thailand for nearly three months and requiring repairs that cost millions. Given the scarcity of equipment and personnel, it could take months, if not years, for the United States to recover from a large-scale, coordinated assault. Attackers wouldn’t even need to target U.S. assets, since U.S. traffic flows through more than a dozen other countries that serve as major hubs for the global undersea cable network.
Much of this infrastructure allows the global economy to function. Every day, SWIFT, the Society for Worldwide Interbank Financial Telecommunication, transmits some 20 million messages to more than 8,000 banking organizations, security institutions, and corporate customers in nearly 200 countries, reconciling trillions of dollars’ worth of assets across global financial markets. Intercontinental Exchange, which operates a global network of currency exchanges and clearing-houses, typically processes over ten million contracts each day, covering the energy, commodity, financial, and equity derivatives markets. Without the undersea fiber-optic network, this type of electronic banking and commerce simply could not happen. And in the event that the cable system shut down, millions of transactions would be cut short.
A major attack on deep-water drilling infrastructure could have many immediate effects, but two stand out. First, the environmental damage could be devastating. Residents around the Gulf of Mexico are still feeling the repercussions of the 2010 explosion on BP’s Deepwater Horizon rig, and the cleanup costs have already reached into the tens of billions. Yet Deepwater Horizon was only one of thousands of production platforms and drilling rigs in the Gulf of Mexico, many of which belong to vast networks of undersea wells, pumps, and valves connected by thousands of miles of pipeline.
Second, an attack could cause a major disruption in global energy supplies. About one-third of global oil production now occurs offshore, with the largest fields in the Persian Gulf and the Caspian Sea. Onshore facilities along the Gulf Coast that are connected to sea-based ports by submarine pipelines account for over 40 percent of total U.S. oil-refining capacity and over 30 percent of U.S. natural-gas-processing capacity. Both in the United States and elsewhere, oil companies have increasingly ventured into deep and ultradeep water (greater than 1,000 and 5,000 feet, respectively). Over the past decade, global investment in offshore oil and gas infrastructure has steadily increased, from about $100 billion to over $300 billion annually. The estimated volume of newly discovered oil and gas reserves in deep water now exceeds that onshore and in shallow water. And by 2035, forecasts suggest, deep-water wells will account for 11 percent of total global production, up from six percent in 2013.
Submarine infrastructure is already vulnerable to attack and will become even more so in the coming years, especially as undersea vehicles grow more advanced and accessible. Unprotected cables and energy infrastructure could provide adversaries with all kinds of opportunities to gain the upper hand. Hostile forces could, for instance, plant explosive charges in sensitive locations and threaten to pull the trigger. Or they could set off explosions without warning, throwing markets into chaos and disrupting military command-and-control systems. State and nonstate actors could conduct anonymous attacks or act under a false flag. Attributing responsibility for a covert attack would prove challenging, making deterrence extremely difficult. Such moves wouldn’t be unprecedented, of course: before undersea fiber optics dominated global communications, cable cutting was a regular part of warfare. In 1914, the United Kingdom severed all five of Germany’s undersea cables in the English Channel the day after declaring war, and belligerents regularly snipped enemy cables during World War II. But today, it would be more difficult to sever fiber-optic lines without affecting a much larger and more interdependent system—making a potential attack all the more damaging.